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Abstract:
An important problem in mathematics is to determine if a system of polynomial equations has or
not solutions over a given set. We study systems of polynomial equations over finite fields Fp, p
prime, and look for sufficient conditions that guarantee their solvability over the field. Using the
covering method of (Castro & Rubio, n.d.) we get conditions on the degrees of the terms that allow
us to construct families of systems that have exact p-divisibility of the number of solutions and
therefore guarantee the solvability of the system over the finite field.

Keywords: mathematics, polynomial equations, finite fields, solvability

Resumen:
Un problema importante en las matemáticas es el determinar si un sistema de ecuaciones polinomi-
ales tiene o no soluciones sobre un conjunto dado. Estudiamos sistemas de ecuaciones polinomi-
ales sobre campos finitos Fp, donde p es primo, y buscamos condiciones suficientes para garantizar
que el sistema tenga solución sobre el campo. Usando el método de la cubierta de (Castro & Rubio,
n.d.) obtenemos condiciones en los grados de los términos de modo que podamos construir famil-
ias de sistemas que tengan divisibilidad exacta p del número de soluciones, y por consiguiente
garantizar que el sistema tenga solución sobre el campo finito.
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1 Introduction
The computation of the p-divisibility of an exponential sum is a mathematical tool used for

different purposes. In our research, the p-divisibility is used to determine if a system of polynomial
equations
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where bi jk ∈ {0,1}, has solutions or not over a finite field.

The exact p-divisibility of exponential sums was used in (Castro & Rubio, 2010) to determine
the solvability of certain systems of polynomial equations. The results in that paper were obtained
by solving systems of polynomial congruences. The covering method was used in (Castro & Rubio,
n.d.) to prove that if a system of polynomial equations has a certain (p−1)-covering the system is
solvable. We present sufficient conditions on the degrees of the terms of a system of polynomial
equations that guarantee that it produces the type of (p−1)-covering in (Castro & Rubio, n.d.) and
assure that the system is solvable.

2 Preliminaries
First, we introduce some concepts that will be used in our work. The handbook (Panario &

Mullen, 2013) is a complete reference book for all the background and recent results in finite
fields.

Definition 1. A finite field Fq is a field with q = p f elements, where p is a prime.

Example 1.
F7 = Z7 = {0, 1, 2, 3, 4, 5, 6} ,

with addition and multiplication mod 7 is a field.

Example 2.
Z6 = {0, 1, 2, 3, 4, 5} ,

with addition and multiplication mod 6 is not a field because 3 does not have a multiplicative
inverse.

In this work we only deal with prime fields, this is, q = p.

Definition 2. A system of polynomial equations over Fp is a set of equations F1 = 0, ...,Fn = 0,
where Fi are polynomials in n variables X1, . . . ,Xn and coefficients in Fp.

We assume that every system of polynomial equations contains all the variables X1, · · · ,Xn, and
denote the set of all polynomials in X1, · · · ,Xn and coefficients in Fp by Fp[X].
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2.1 Exponential Sums and Solvability
Definition 3. The exponential sum over Fp associated with the polynomial F(X) is given by

S(F) = ∑
x∈Fn

p

ζ
F(x),

where ζ is a p-th root of unity.

This number is hard to compute but we are not interested in the exact number, we just look for
the greatest power of p that divides the sum.

Definition 4. The exact p-divisibility of a positive integer k, denoted as νp(k), is the exponent of
the highest power of p dividing k.

Example 3.
νp(40) = νp(23 ·5).

Hence,
ν2(40) = 3, ν5(40) = 1, and νp(40) = 0 for p 6= 2,5.

Note that, if k = 0, there is no highest power of p that divides k. This is, the exact p-divisibility
of 0 is not defined.

To determine if a system is solvable, we need to know if the exponential sum of the system
of polynomials has exact p-divisibility. The exponential sum is defined for a single polynomial;
we construct a new polynomial from the system of polynomials. This new polynomial is obtained
by multiplying a new variable to each polynomial in the system and adding the products. The
exponential sum of this new polynomial gives the number of common zeros of the system.

Lemma 1 (Ax (1964)). Let F1(X), . . . ,Ft(X) ∈ Fp[X] and N be the number of common zeros of
F1, . . . ,Ft . Then,

N = p−t ·S(Y1F1(X)+ · · ·+YtFt(X)).

The exact value of this number N is hard to compute because it depends on the exact value of
the exponential sum. But we are interested on whether or not the system has solutions and it is
enough to know if N = 0 or N 6= 0.

Note that if νp(N) = a, this implies that pa|N and pa+1 - N, therefore N 6= 0, because 0 is
divisible by every number that is not 0. This is, if the exponential sum associated with a system of
polynomial equations has exact p-divisibility, we guarantee that the system is solvable.

To determine systems which have exact p-divisibility we use the covering method as it was
presented in (Castro & Rubio, n.d.).

2.2 The Covering Method
We now define the (p−1)-covering of a polynomial F , which encodes how many monomials

of F (including repetitions) are needed to have each variable “represented" a multiple of p− 1
times.
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Definition 5. Let F(X) = a1F1 + a2F2 + · · ·+ arFr. A set C = {F1
v1, . . . ,Fr

vr} of powers of the
monomials in F is a (p− 1)-covering of F if in the product F1

v1 · · ·Fr
vr the exponent of each

variable is a positive multiple of p− 1. Note that some of the vi might be 0. The size of the
(p−1)-covering is ∑

r
i=1 vi.

Definition 6. A set C = {Fv1
1 , . . . ,Fvr

r } is a minimal (p−1)-covering of F if for any other (p−1)-

covering C′ = {Fv′1
1 , . . . ,Fv′r

r } of F, ∑
r
i=1 v′i ≥ ∑

r
i=1 vi.

Example 4. Consider
F(X) = X1X2 +X3X4 +X1X2X3X4 ∈ F2[X].

Then C1 = {(X1X2),(X3X4)} is a 1-covering of F of size 2 and the minimal 1-covering of F is
C2 = {(X1X2X3X4)} and it has size 1.

If F(X) ∈ F5[X], then C1 = {(X1X2)
4,(X3X4)

4} is a 4-covering of F of size 8, and C2 =
{(X1X2X3X4)

4} is the minimal 4-covering of F of size 4.

The covering method for computing exact 2-divisibility of exponential sums of binary polyno-
mials was introduced in (Castro, Medina, & Rubio, 2011). In (Castro & Rubio, n.d.) the authors
presented the following sufficient conditions to obtain polynomials such that their exponential sum
has exact p-divisibility.

Theorem 1 ((Castro & Rubio, n.d.), Theorem 3.7). Suppose that F = a1F1 + · · ·+ arFr has a
unique minimal (p−1)-covering C = {Fv1

1 , . . . ,Fvr
r } where each monomial in C with vi 6= 0 has at

least two variables that are not contained in the other monomials of C. Then νp(S(F)) = ∑
r
i=1

vi
p−1 .

3 Conditions for Solvability
The results in (Castro & Rubio, n.d.) gave sufficient conditions to guarantee that the exponen-

tial sum of the polynomials has exact p-divisibility. However, these conditions are on the type of
(p−1)-coverings that the polynomials must have and it might be hard to know if these conditions
are satisfied by just looking at the polynomials. Also, for the exact p-divisibility of the number of
solutions we have to consider the new variables Yi as in Lemma 1. Here we present a result similar
to Theorem 1 but with conditions in the degrees of the polynomials. We also present a similar
theorem for the computation of the exact p-divisibility of the number of solutions of the system of
polynomials.

To use Theorem 1 we need the polynomial F to have a unique minimal (p−1)-covering. We

now prove conditions so that polynomials of the form F = a1

(
Xb11

1 · · ·X
b1n
n

)d1
+· · ·+ar

(
Xbr1

1 · · ·Xbrn
n

)dr
,

where b jk ∈ {0,1}, have this type of (p−1)-covering. Corollary 3.8 in (Castro & Rubio, n.d.) has
a similar result but the proof was not provided.

Lemma 2. If the polynomial F = a1

(
Xb11

1 · · ·X
b1n
n

)d1
+ · · ·+ar

(
Xbr1

1 · · ·Xbrn
n

)dr

= a1F1 + · · ·+arFr ∈ Fp[X], where b jk ∈ {0,1}, is such that each Fj has at least one variable that

is not contained in the other monomials of F, then C = {F1
p−1

gcd(p−1,d1) , . . . ,Fr
p−1

gcd(p−1,dr)} is the unique
minimal (p−1)-covering of F.
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Proof. First, in order to prove that C covers all the variables, we have to show that the exponent

of each variable in the product F1
p−1

gcd(p−1,d1) · · ·Fr
p−1

gcd(p−1,dr) is a positive multiple of (p− 1). The
exponent of Xk has the form β = d1 · v1 · b1k + · · ·+ dr · vr · brk, where v j =

p−1
gcd(p−1,d j)

. Note that
b jk = 0 when Xk is not in the monomial Fj and b jk = 1 when it is. This is,

β = d1 ·
p−1

gcd(p−1,d1)
·b1k + · · ·+dr ·

p−1
gcd(p−1,dr)

·brk

= lcm(p−1,d1) ·b1k + · · ·+ lcm(p−1,dr) ·brk

= (p−1)l1 ·b1k + · · ·+(p−1)lrbrk, li ∈ N
= (p−1) [l1 ·b1k + · · ·+ lrbrk] ,

where li 6= 0, and, since F contains all the variables, there exist at least one k such that b jk = 1.
Therefore, l1b1k + · · ·+ lrbrk ∈N, and the exponent of Xk is a positive multiple of p−1. The same
reasoning can be used for each of the other variables.

Now, we want to prove that the covering is minimal and unique. Since each Fi has at least one
variable that is not contained in Fj, for all j 6= i, we can take a variable Xk, that only appears in

Fi. Then, in the product F1
p−1

gcd(p−1,d1) · · ·Fr
p−1

gcd(p−1,dr) , Xk has exponent di · p−1
gcd(p−1,di)

= lcm(p−1,di)

and therefore the exponent of Xk is the smallest multiple of p− 1 and di. This implies that the
monomial Fi cannot have a smallest exponent in any other (p− 1)-covering. The same argument
works for all the other monomials in F and the (p− 1)-covering is minimal and unique with this
property.

Example 5. Consider the polynomial F = 7X4
1 +4X5

2 +3X9
3 ∈ F13[X]. A 12-covering of F is

C =

{(
X4

1
)6
,
(

X5
2

)24
,
(
X9

3
)8
}
=
{

X24
1 ,X120

2 ,X72
3
}
,

and has size 38, but the minimal 12-covering of F is

C =

{(
X4

1
) 12

gcd(12,4) ,
(

X5
2

) 12
gcd(12,5)

,
(
X9

3
) 12

gcd(12,9)

}
=

{(
X4

1
)3
,
(

X5
2

)12
,
(
X9

3
)4
}
=
{

X12
1 ,X60

2 ,X36
3

}
,

and has size 18.

We now present sufficient conditions on the exponents d1, . . . ,dr of the terms in the polynomial
F that guarantee that the equation F = α is solvable for any α ∈ Fp.

Theorem 2. Suppose that F = a1

(
Xb11

1 · · ·X
b1n
n

)d1
+ · · ·+ar

(
Xbr1

1 · · ·Xbrn
n

)dr

= a1F1 + · · ·+ arFr ∈ Fp[X], where b jk ∈ {0,1}, is such that each monomial Fi has at least two
variables that are not contained in the other monomials of F. If gcd(di, p− 1) = k and k|r, then
F(X) = α is solvable for any α ∈ Fp.
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Proof. By Lemma 1, the number of zeros of F −α is N = p−1 · S(Y (F −α)), where S(Y (F −
α)) is the exponential sum of Y (F − α). By Lemma 2, C = {F1

p−1
gcd(p−1,d1) , . . . ,Fr

p−1
gcd(p−1,dr)} is

the unique minimal (p− 1)-covering of F . Consider C′ = {(Y F1)
p−1

gcd(p−1,d1) , . . . ,(Y Fr)
p−1

gcd(p−1,dr)}.
Since gcd(p− 1,di) = k and k|r, the variable Y in (Y F1)

p−1
gcd(p−1,d1) · · ·(Y Fr)

p−1
gcd(p−1,dr) has exponent

∑
r
i=1

p−1
gcd(p−1,di)

= ∑
r
i=1

p−1
k = r( p−1

k ) = c(p−1), where c ∈ N, because k|r. This implies that Y is
(p−1)-covered in C′. By the same arguments in the proof of Lemma 2, C′ is the unique minimal
(p−1)-covering of F .

Theorem 1 implies that

νp(S(Y (F−α))) =
r

∑
i=1

vi

(p−1)
=

r

∑
i=1

(p−1)
gcd(p−1,di)

· 1
(p−1)

=
r

∑
i=1

1
k
= r · 1

k
= c.

Now we have that

νp(N) = νp
(

p−1S(Y (F−α))
)
= νp

(
p−1)+νp (S (Y (F−α))) =−1+ c,

c ∈ N. Since νp (S (N)) = c−1, we have that pc - N and therefore N 6= 0.

Example 6. Consider the polynomial F = (X1X2)
8 + (X3X4)

10 ∈ F19[X]. The number of zeros
of F −α , α ∈ F19 is N = p−1 · S (Y (F−α)). By Lemma 2, the unique minimal 18-covering of
Y (F−α) is

C =

{(
Y (X1X2)

8
) 18

gcd(18,8)
,
(

Y (X3X4)
10
) 18

gcd(18,10)
}

=

{(
Y (X1X2)

8
)9

,
(

Y (X3X4)
10
)9
}
=
{

Y 9 (X1X2)
72 ,Y 9 (X3X4)

90
}
.

Using Theorem 1,

νp (S (Y (F−α))) =
2

∑
i=1

vi

(p−1)
=

18
gcd(18,8)

· 1
18

+
18

gcd(18,10)
· 1

18
= 1.

By Lemma 1, this implies that νp(N) = 1−1 = 0, where N is the number of solutions of F−α = 0.
Therefore, the equation F = α is solvable for any α ∈ F19.

We can extend this theorem to systems with several equations. To simplify the notation, we
only state the result for 2 equations.

Theorem 3. Consider a system of two polynomials equations over Fp

F1 = a11

(
Xb111

1 · · ·Xb11n
n

)d11
+ · · ·+a1r1

(
X

b1r11
1 · · ·Xb1r1n

n

)d1r1

F2 = a21

(
Xb211

1 · · ·Xb21n
n

)d21
+ · · ·+a2r2

(
X

b2r21
1 · · ·Xb2r2n

n

)d2r2
,
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where b jk ∈ {0,1}, and F1 = a11F11 + · · ·+ a1r1F1r1,F2 = a21F21 + · · ·+ a2r2F2r2 are such that
each monomial Fji has at least two variables that are not contained in the other monomials of
F1+F2. If gcd(p−1,d1i) = k1, where k1|r1, and gcd(p−1,d2i) = k2, where k2|r2, then the system
F1 = α1,F2 = α2 is solvable for any α1,α2 ∈ Fp.

Proof. Let F = Y1(F1−α1)+Y2(F2−α2). By Lemma 1, the number of common solutions of the
system is

N = p−2 ·S(F),

where S(F) is the exponential sum associated with the system. By Lemma 2, the unique minimal

(p−1)-covering of F1+F2 is C =
{

F11

p−1
gcd(p−1,d11) , . . . ,F1r1

p−1
gcd(p−1,d1r1) ,(F21)

p−1
gcd(p−1,d21) , . . . ,(F2r2)

p−1
gcd(p−1,d2r2)

}
.

Consider C′=
{
(Y1F11)

p−1
gcd(p−1,d11) , . . . ,(Y2F2r2)

p−1
gcd(p−1,d2r2)

}
. Since gcd (p−1,d1i)= k1 and gcd (p−1,d2i)=

k2, the exponents of Y1 in (Y1F11)
p−1

gcd(p−1,d11)

· · ·(Y1F1r1)

p−1
gcd(p−1,d1r1) and Y2 in (Y2F21)

p−1
gcd(p−1,d21) · · ·(Y2F2r2)

p−1
gcd(p−1,d2r2) are ∑

r1
i=1

p−1
gcd(p−1,d1i)

=∑
r1
i=1

p−1
k1

=

r1
p−1
k1

= (p− 1)c1 and ∑
r2
i=1

p−1
gcd(p−1,d2i)

= ∑
r2
i=1

p−1
k2

= r2
p−1
k2

= (p− 1)c2, respectively, where
c1,c2 ∈ N. Therefore Y1 and Y2 are (p− 1)-covered in C′. By the same arguments in the proof
of Lemma 2, C′ is the unique minimal (p−1)-covering of F .

Theorem 1 implies that

νp (S(F)) =
r1

∑
i=1

v1i

(p−1)
+

r2

∑
i=1

v2i

(p−1)

=
r1

∑
i=1

(p−1)
gcd(p−1,d1i)

· 1
(p−1)

+
r2

∑
i=1

(p−1)
gcd(p−1,d2i)

· 1
(p−1)

=
r1

∑
i=1

1
k1

+
r2

∑
i=1

1
k2

= r1 ·
1
k1

+ r2 ·
1
k2

= c1 + c2.

Now we have that

νp(N) = νp
(

p−2 ·S(F))

= νp
(

p−2)+νp (S(F)) =−2+ c1 + c2,

c1,c2 ∈ N. Since νp(N) = c1 + c2−2, we have that pc1+c2−1 - N and therefore N 6= 0.

Example 7. Consider the polynomials F1 =(X1X2)
3+(X3X4X5)

9+(X6X7X8)
21 and F2 =(X8X9X10)

2+

(X11X12)
14 over F31. The number of common zeros is N = p−2 ·S(Y1F1 +Y2F2). The unique mini-

mal 30-covering of F = Y1F1 +Y2F2 is
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C =

{(
Y1 (X1X2)

3
) 30

gcd(30,3)
,
(

Y1 (X3X4X5)
9
) 30

gcd(30,9)
,
(

Y1 (X6X7X8)
21
) 30

gcd(30,21)
,(

Y2 (X8X9X10)
2
) 30

gcd(30,2)
,
(

Y2 (X11X12)
14
) 30

gcd(30,14)
}

=
{

Y 10
1 (X1X2)

30 ,Y 10
1 (X3X4X5)

90 ,Y 10
1 (X6X7X8)

210 ,Y 15
2 (X8X9X10)

30 ,

Y 15
2 (X11X12)

210
}
.

Using Theorem 1,

νp (S(F)) =
3

∑
i=1

v1i

(p−1)
+

2

∑
i=1

v2i

(p−1)

=
3

∑
i=1

1
gcd(30,d1i)

+
2

∑
i=2

1
gcd(30,d2i)

=
1
3
+

1
3
+

1
3
+

1
2
+

1
2
= 2.

This implies that νp(N) = 0 and F1 = α1, F2 = α2 is solvable.
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